Оксигенераторы своими руками

Содержание

Насыщение воды кислородом

Оксигенераторы своими руками

Доступность растворенного кислорода (РК) обычно является главным фактором, который ограничивает возможность увеличения плотности посадки в замкнутой системе водоснабжения. Измерение его концентрации проводится различными методами (подробнее).

Использование только аэрации для обеспечения кислорода позволяет поддерживать плотность посадки 40 кг/м3. Однако внесение чистого кислорода с помощью оборудования эффективной подачи газа повышает плотность посадки до 120 кг/м3.

В расчет берется разница концентрации растворенного кислорода на входе емкости культивирования (10 мг/л при аэрации или 18 мг/л подача чистого кислорода) и на выходе системы.

Например, при концентрации растворенного кислорода на выходе 6 мг/л для дыхания рыбы доступно лишь 4 мг/л при аэрации (10 мг/л — 6 мг/л) и 12 мг/л при подачи чистого кислорода (18 мг/л — 6 мг/л). Таким образом, плотность посадки может возрасти с 40 кг/м3 до 120 кг/м3.

Интересно, что концентрация побочных продуктов (твердого осадка) при возрастании плотности зарыбления также возрастает. Поэтому необходимо более эффективное их удаление, например, использование микросетчатого фильтра.

Запросы водных организмов в отношении концентрации кислорода зависят от многочисленных факторов, включающих плотность посадки, количества вносимого корма, уровня стресса, температуры воды и ряда других.

Холодноводные виды нуждаются в 0,3-0,5 кг кислорода на 1 кг корма. При высоких температурах и наличии кислородного запроса со стороны биофильтра и других бактерий потребность в кислороде возрастает до 1 кг кислорода на 1 кг корма.

Минимальные значения растворенного кислорода зависят также от потребностей конкретного вида рыб и условий выращивания. Тилапия может выживать при таких уровнях растворенного кислорода, при которых радужная форель или лосось погибают в течение считанных минут.

Стоит отметить, что концентрация O2 менее 4-6 мг/л снижает ростовые показатели.

Плотность посадки можно повысить путем повышения количеств вносимого корма, когда решена проблема с доступностью кислорода и снижены такие лимитирующие факторы, как общий уровень азотсодержащих продуктов, CO2, объем емкости культивирования. Повышение плотности зарыбления должно быть экономически оправдано.

Таким образом, концентрация растворенного кислорода является одним из наиболее существенных лимитирующих факторов, определяющих количество выращиваемой рыбы.

Тем не менее, интенсификация снабжения воды чистым кислородом, равно как и аэрация, ограничена, потому что на каждые 10 мг/л потребляемого O2 образуется 1,0-1,4 мг/л TAN (общий уровень азота), 13-14 мг/л CO2 и 10-20 мг/л твердых частиц в осадке. При потреблении кислорода системой более 10-22 мг/л (в зависимости от щелочности, pH, температуры, видов рыб) лимитирующим фактором становится концентрация растворенного углекислого газа (без снятия и контроля pH).

Аэрация атмосферным воздухом (слева) и оксигенация кислородной смесью (справа).

Перенос газов

Аэрация — процесс контакта газов с водой.

Когда воздух контактирует с водой, растворенные газы в воде достигают равновесной фазы, согласно парциальному давлению газов в атмосфере. На растворение газов влияют два фактора, площадь поверхности раздела сред «воздух-вода» и разница парциальных давлений (концентраций) газов при насыщении и в воде.

Например, если вода не насыщена газом, последний будет растворяться. В противном случае, при сверхнасыщении воды, газ начнет покидать воду. В простейшей капельной колонне можно удалять из воды сверхнасыщенный азот, тогда как кислород, не достигший этого состояния, напротив, начинает растворяться.

Скорость переноса газов зависит от дефицита (или избытка) их в растворе. Она пропорциональна константе, известной как коэффициент переноса газа. Общий коэффициент переноса газа определяется условиями, созданными с конкретной системе подачи газа.

Это составной показатель, включающий такие факторы, как коэффициент диффузии газов, толщина жидкостной пленки и площадь поверхности раздела фаз «воздух-вода». Озвученные факторы также обозначают пути для повышения общего количества переносимого газа.

Например, можно уменьшить толщину жидкостной пленки за счет перемешивания и создания турбулентных потоков; путем уменьшения размера пузырьков, повысить площадь поверхности раздела фаз «воздух-вода»; либо увеличить концентрационный градиент.

Концентрационный градиент можно повысить путем введения чистого кислорода, установкой систем повышенного давления, сдерживанием парциального давления газа в атмосфере от резких изменений при его протекании по системе переноса (увеличением площади поверхности раздела фаз).

Чистый кислород контактирует с водой, где достигает сверхнасыщенного состояния. При этом из раствора уходит незначительная доля азота.

В условиях обычной аэрации плотность посадки остается относительно низкой (менее 40 кг/м3), но обеспечивается контакт воды с атмосферным воздухом, что предотвращает накопление токсических концентраций углекислого газа.

Кислородная смесь в 5 раз повышает растворимость кислорода в воде по сравнению с аэрацией обычным воздухом (48,1 мг/л против 10,1 мг/л при 15 °C). Возрастание давления с 1 до 2 атмосфер приводит к возрастанию растворимости кислорода в два раза (97 мг/л против 48 мг/л при 15 °C).

В рыбоводстве чаще всего используется три источника кислорода: кислородная смесь под высоким давлением, сжиженный кислород и генерация кислорода на месте. Для гарантированного присутствия кислорода во многих хозяйствах предусмотрено, по крайней мере, два источника его получения.

Кислородная смесь под высоким давлением, содержит от 3 до 7 м3 газа под давлением 170 атмосфер. С целью повышения емкости можно соединить вместе несколько баллонов.

Вследствие своей дороговизны и ограниченной вместимости, кислородные баллоны используются только в качестве запасного средства, на крайний случай.

Также кислород можно генерировать на месте, используя адсорбцию с перепадом давления (PSA – “Pressure Swing Adsorption”) или вакуумное адсорбционное разделение (VSA – “Vacuum swing Adsorption”).

В обоих случаях для избирательной адсорбции или абсорбции азота из воздуха для продукции смеси, обогащенной кислородом, используется молекулярный микрофильтр. На рынке представлены модели, производительностью 0,5-14 кг кислорода в час при 0,7-3,3 атмосферах.

Для продукции смеси, содержащей 85-95% кислорода, требуется источник сухого, отфильтрованного воздуха, подаваемого под давлением 6,0-10,0 атмосфер. PSA и VSA операционные единицы функционируют периодически и включаются только по необходимости.

Они очень надежны и не требуют большого ухода. Тем не менее, данное оборудование очень дорого стоит, равно и как его работа, что связано с необходимостью подачи воздуха под высоким давлением.

Кроме того, так как для своей работы PSA и VSA единицы нуждаются в электричестве (1,1 кВт на 1 кг O2), на случай его отключения необходим запасной источник чистого кислорода.

Очень часто существует возможность получить жидкий кислород 98-99% чистоты, который может транспортироваться и храниться в контейнерах типа сосуда Дьюара. При 1 атмосфере жидкий кислород вскипает при -182.96°C, поэтому требуется специальный криогенный контейнер для хранения.

Он может варьировать в размерах от 0,11 м3 до 38 м3, и обычно арендуется или поступает в лизинг от поставщиков, хотя небольшие емкости могут продаваться. Четыре с половиной литра жидкого кислорода эквивалентно 3,26 м3 газообразного кислорода.

Максимальное давление в контейнере варьирует от 8,775 до 11,7 атмосфер. Перед использованием жидкий кислород испаряется непосредственно через теплообменники. Система хранения жидкого кислорода состоит из емкости для хранения, теплообменника-газификатора и регулятора давления.

Использование данного оборудования зависит от транспортных расходов, и снижает затраты на поддержание и покупку PSA систем. Оборудование для хранения и подачи жидкого кислорода очень надежно и работает даже при отключении электричества.

Проблемы наблюдаются при его использовании в качестве запасного варианта на случай отключения электричества, когда хранимого объема газа оказывается недостаточно. Необходимо внимательно отнестись к возможным рискам и подбирать контейнеры достаточного объема.

Кислорода должно быть достаточно, по крайней мере, на 30 дней эксплуатации. При первых признаках ухудшения погодных условий и использовании сжиженной смеси благоразумно снизить количество вносимого корма, что уменьшит кислородные запросы рыб в течение следующих 24 часов.

Оборудование для оксигенации

В непрерывной жидкой фазе (пузырьки в воде): U-образные трубы, кислородные конусы (насыщение в нисходящем водном потоке), кислородный аспиратор, распылители.

Для переноса кислорода используются непрерывная газовая фаза (вода капает в воздухе): многоуровневые низконапорные оксигенаторы, упакованные или распыляющие колонны, колонны под давлением, закрытые механические поверхностные смесители.

Многоуровневые низконапорные оксигенаторы используются чаще всего, потому что они приспособлены для высокоскоростного потока с минимальным гидростатическим напором. Традиционный низконапорный оксигенатор был разработан Воттеном в 1989 году.

Читайте также  Как сделать газовую плиту своими руками

В настоящее время созданы разнообразные схемы данного устройства, которые, однако, имеют один принцип работы. Оксигенатор состоит из распределительной пластины, находящейся над несколькими (5-10) прямоугольными камерами.

Вода течет через заградительные пластины до конца канала, либо с помощью помпы направляется вверх от емкости с рыбой, через распределительную пластину, а затем падает через прямоугольные камеры.

Камеры обеспечивают поверхность на границе раздела фаз, необходимую для смешивания и переноса газа. Нисходящий поток собирается на дне каждой камеры и покидает их. Весь чистый кислород вводится во внешнюю или первую прямоугольную камеру.

Смесь газов в первой камере постепенно распространяется по всем камерам. При прохождении от камеры в камеру газовая смесь постепенно теряет кислород, который растворяется в воде. Наконец, остатки смеси покидают последнюю камеру.

Каждая из прямоугольных камер газопроницаема. Отверстия между ними сделаны таким образом, чтобы препятствовать обратному смешиванию воды.Многоуровневые низконапорные оксигенаторы. Справа конструкция с коническим дном.

Подача кислорода Объем газа/жидкости Эффективность переноса кислорода
>8 мг/л

Источник: http://aquavitro.org/2013/06/17/nasyshhenie-vody-kislorodom/

Водородно-кислородный генератор своими руками

Перевел Creator для mozgochiny.ru

Привет мозгоизобретатели! В сегодняшнем проекте будет с нуля создан электрический генератор, преобразующий обычную воду в топливо.

Шаг 1: Что такое водородно-кислородный генератор

Водородно-кислородный генератор, аналогичный этому, использует электричество от автомобильного аккумулятора для расщепления воды на газообразный водород и кислород. (Электричество + 2H20 —> 2H2 + O2). В итоге получается топливо, намного мощнее бензина, а в результате выбросов высвобождается только вода!

Это полностью чистый вид топлива, наподобие энергии солнца, ветра или воды, электричество используется только для образования газа.

В видео показано пошаговое создание данного генератора.

ПРИМЕЧАНИЕ: Количество электрической энергии, требуемой для образования газа, превышает энергию, которую можно в итоге получить от генератора. Это НЕ генератор энергии, а простой энергетический конвертор.

Шаг 2: Подготовка металлических заготовок для пластин генератора

Для выполнения данного проекта нам понадобятся детали из нержавеющей стали и трубные фитинги из пластмассы. Вы можете приобрести их в ближайшем магазине хозяйственных товаров.

Я использовал нержавеющую сталь калибра 20 (0,8 мм) и с помощью гидравлического перфоратора пробил требуемые отверстия в верхней и нижней части пластин.

В результате мы получили 12 пластин размером 7,6 х 15, 2 см, 4 пластины 3,8 х 15,2 см, и 3 соединительные полоски 2,54 см, 4 — 1,27 см и 3 — 0,62 см.

Ленточно-шлифовальная машина используется для сглаживания зазубренных краев вокруг отверстий.

Шаг 3: Увеличение плоскости соприкосновения пластин

Далее я использовал наждачную бумагу с зерном 100 для ошкуривания пластин по диагонали. На обеих сторонах пластины можно увидеть символ «X». Это увеличивает площадь соприкосновения пластины и способствует образованию большего количества газа.

Шаг 4: Конфигурирование пластин в сборе

Пластины соединяются таким образом, чтобы 2 внутренние пластины подключались к одному электрическому выводу, а 2 верхние пластины подключаются к другому выводу. Пластмассовые стержни, пластмассовые шайбы и гайки из нержавеющей стали помогают сделать надежные электрические соединения.

Пластины генератора собираются в следующем порядке – пластина, пластмассовые шайбы, пластина, стопорная гайка из нержавеющей стали и так пока все 8 пластин не будут соединены.

Пошаговая видео инструкция по сборке пластины генератора показана здесь.

После сбора пластин, необходимо установить пластмассовую заглушку 10,1 см, которая прикрепляется в верхней части с помощью нескольких винтов из нержавеющей стали.

Шаг 5: Изготовление корпуса генератора

Корпус состоит из двух пластмассовых адаптеров 10,1 см, с перевернутой заглушкой 10,1 см в нижней части. Основу корпуса составляет акриловая или пластмассовая труба диаметром 10,1 см, Пластины генератора и крышка вкручиваются в верхнюю часть.

Водяной смеситель изготовлен в той же манере из акриловой трубы диаметром 5 см. Его необходимо прикрепить сбоку устройства.

Шаг 6: Изготовление зажимов для смесителя

Зажимы можно изготовить из остатков акриловой или пластмассовой трубы, и приклеить впоследствии клеем в боковой части корпуса.

Для изготовления зажимов я отрезал от трубы диаметром 5 см заготовки 1,9 см и отрезал верхнюю часть размером 0,8 см для формирования захвата. Далее полученную заготовку я прикрепил к акриловому стержню и присоединил к боковой стороне генератора.

Шаг 7: Установка оборотного клапана

В верхнем колене устанавливается прозрачная трубка и одноходовой оборотный клапан. Убедитесь, что клапан стравливает газ, и он не возвращается назад в устройство.

Шаг 8: Подготовка электролита

Для приготовления электролита используется дистиллированная вода и 2-4 ложки KOH (гидроксида калия). Соль или пищевая сода также пригодны, однако со временем они могут вызвать загрязнение и коррозию пластин.

Я размешал хлопья гидроксида калия в воде, далее использовал фильтр для подачи раствора в корпус генератора (после тщательной очистки).

Примечание: Гидроксид калия является каустическим средством и поэтому может вызывать ожоги кожи. Избегайте прямого контакта!

Шаг 9: Финальные штрихи

Вода добавляется в смеситель, далее надевается назад крышка, и прозрачные трубки подвешиваются на свое место.

Я протестировал устройство с использованием автомобильного аккумулятора напряжением 12 В и кабельным перемычками. Образованный газ собирается в небольшой бутылочке из-под воды, и поджигается пламенем.

При напряжении 12 вольт мы получаем 1,5 литра газа в минуту. Если последовательно подключить 2 аккумулятора, тогда при напряжении 24 вольта имеем на выходе 5 литров газа в минуту. Этого достаточно для заполнения емкости объемом 4 галлона (15 литров) за 38 секунд!

Примечание: При большем напряжении в системе присутствует больший ток, что приводит к значительному нагреву. В таком случае возникает опасность расплавления пластмассового корпуса из-за воздействия высокой температуры.

Шаг 10: Сколько силы под капотом нашего генератора?

Данная система не предназначена для использования на транспортном средстве, а просто демонстрирует процесс электролиза воды и образования газа.

Смотрите видео, где показаны эксперименты по поджигу газа, а также некоторые полезные характеристики генератора.

Удачи!

(A-z Source)

Источник: http://mozgochiny.ru/himiya/vodorodno-kislorodnyiy-generator-svoimi-rukami/

Оксигенераторы своими руками — Портал по безопасности

Удорожание энергоносителей стимулирует поиск более эффективных и дешевых видов топлива, в том числе на бытовом уровне.

Более всего умельцев – энтузиастов привлекает водород, чья теплотворная способность втрое превышает показатели метана (38.8 кВт против 13.8 с 1 кг вещества).

Способ добычи в домашних условиях, казалось бы, известен – расщепление воды путем электролиза. В действительности проблема гораздо сложнее. Наша статья преследует 2 цели:

  • разобрать вопрос, как сделать водородный генератор с минимальными затратами;
  • рассмотреть возможность применения установки для отопления частного дома, заправки авто и в качестве сварочного аппарата.

Краткая теоретическая часть

Водород, он же hydrogen, – первый элемент таблицы Менделеева – представляет собой легчайшее газообразное вещество, обладающее высокой химической активностью. При окислении (то бишь, горении) выделяет огромное количество теплоты, образуя обычную воду. Охарактеризуем свойства элемента, оформив их в виде тезисов:

  1. Горение водорода – процесс экологически чистый, никаких вредных веществ не выделяется.
  2. Благодаря химической активности газ в свободном виде на Земле не встречается. Зато в составе воды его запасы неиссякаемы.
  3. Элемент добывается в промышленном производстве химическим способом, например, в процессе газификации (пиролиза) каменного угля. Зачастую является побочным продуктом.
  4. Другой способ получения газообразного водорода – электролиз воды в присутствии катализаторов – платины и прочих дорогих сплавов.
  5. Простая смесь газов hydrogen + oxygen (кислород) взрывается от малейшей искры, моментально высвобождая большое количество энергии.

Для справки. Ученые, впервые разделившие молекулу воды на hydrogen и oxygen, назвали смесь гремучим газом из-за склонности к взрыву. Впоследствии она получила название газа Брауна (по фамилии изобретателя) и стала обозначаться гипотетической формулой ННО.

Раньше водородом наполняли баллоны дирижаблей, которые нередко взрывались

Из вышесказанного напрашивается следующий вывод: 2 атома водорода легко соединяются с 1 атомом кислорода, а вот расстаются весьма неохотно. Химическая реакция окисления протекает с прямым выделением тепловой энергии в соответствии с формулой:

2H2 + O2 → 2H2O + Q (энергия)

Здесь кроется важный момент, который пригодится нам в дальнейшем разборе полетов: hydrogen вступает в реакцию самопроизвольно от возгорания, а теплота выделяется напрямую. Чтобы разделить молекулу воды, энергию придется затратить:

2H2O → 2H2 + O2 — Q

Это формула электролитической реакции, характеризующая процесс расщепления воды путем подведения электричества. Как это реализовать на практике и сделать генератор водорода своими руками, рассмотрим далее.

Создание опытного образца

Чтобы вы поняли, с чем имеете дело, для начала предлагаем собрать простейший генератор по производству водорода с минимальными затратами. Конструкция самодельной установки изображена на схеме.

Из чего состоит примитивный электролизер:

  • реактор – стеклянная либо пластиковая емкость с толстыми стенками;
  • металлические электроды, погружаемые в реактор с водой и подключенные к источнику электропитания;
  • второй резервуар играет роль водяного затвора;
  • трубки для отвода газа HHO.

Важный момент. Электролитическая водородная установка работает только от постоянного тока. Поэтому в качестве источника питания применяйте сетевой адаптер, автомобильное зарядное устройство или аккумулятор. Электрогенератор переменного тока не подойдет.

Принцип работы электролизера следующий:

  1. К двум электродам, погруженным в воду, подводится напряжение, желательно от регулируемого источника. Для улучшения реакции в емкость добавляется немного щелочи либо кислоты (в домашних условиях – обычной соли).
  2. В результате реакции электролиза со стороны катода, подключенного к «минусовой» клемме, станет выделяться водород, а возле анода – кислород.
  3. Смешиваясь, оба газа по трубке поступают в гидрозатвор, выполняющий 2 функции: отделение водяного пара и недопущение вспышки в реакторе.
  4. Из второй емкости гремучий газ ННО подается на горелку, где сжигается с образованием воды.
Читайте также  Пресс гидравлический для автосервиса своими руками

Чтобы своими руками сделать показанную на схеме конструкцию генератора, потребуется 2 стеклянных бутылки с широкими горлышками и крышками, медицинская капельница и 2 десятка саморезов. Полный набор материалов продемонстрирован на фото.

Из специальных инструментов потребуется клеевой пистолет для герметизации пластиковых крышек. Порядок изготовления простой:

  1. Плоские деревянные палочки скрутите саморезами, располагая их концами в разные стороны. Спаяйте головки шурупов между собой и подсоедините провода – получите будущие электроды.
  2. Проделайте отверстие в крышке, просуньте туда разрезанный корпус капельницы и провода, затем герметизируйте с 2 сторон клеевым пистолетом.
  3. Поместите электроды в бутылку и завинтите крышку.
  4. Во второй крышке просверлите 2 отверстия, вставьте трубки капельниц и накрутите на бутылку, заполненную обычной водой.

Для запуска генератора водорода налейте в реактор подсоленную воду и включите источник питания. Начало реакции ознаменуется появлением пузырьков газа в обеих емкостях. Отрегулируйте напряжение до оптимального значения и подожгите газ Брауна, выходящий из иглы капельницы.

Второй важный момент. Слишком высокое напряжение подавать нельзя — электролит, нагревшийся до 65 °С и более, начнет интенсивно испаряться. Из-за большого количества водяного пара разжечь горелку не удастся. Подробности сборки и запуска импровизированного водородного генератора смотрите на видео:

О водородной ячейке мейера

Если вы сделали и испытали вышеописанную конструкцию, то по горению пламени на конце иглы наверняка заметили, что производительность установки чрезвычайно низкая. Чтобы получить больше гремучего газа, нужно изготовить более серьезное устройство, называемое ячейкой Стэнли Мейера в честь изобретателя.

Принцип действия ячейки тоже основан на электролизе, только анод и катод выполнены в виде трубок, вставляющихся одна в другую.

Напряжение подается от генератора импульсов через две резонансные катушки, что позволяет снизить потребляемый ток и увеличить производительность водородного генератора.

Электронная схема устройства представлена на рисунке:

Примечание. Подробно о работе схемы рассказывается на ресурсе http://www.meanders.ru/meiers8.shtml.

Для изготовления ячейки Мейера потребуется:

  • цилиндрический корпус из пластмассы или оргстекла, умельцы нередко используют водопроводный фильтр с крышкой и патрубками;
  • трубки из нержавеющей стали диаметром 15 и 20 мм длиной 97 мм;
  • провода, изоляторы.

Нержавеющие трубки крепятся к основанию из диэлектрика, к ним припаиваются провода, подключаемые к генератору. Ячейка состоит из 9 или 11 трубок, помещенных в пластиковый либо плексигласовый корпус, как показано на фото.

Соединение элементов производится по всем известной в интернете схеме, куда входит электронный блок, ячейка Мейера и гидрозатвор (техническое название – бабблер).

В целях безопасности система снабжена датчиками критического давления и уровня воды.

По отзывам домашних умельцев, подобная водородная установка потребляет ток порядка 1 ампера при напряжении 12 В и обладает достаточной производительностью, хотя точные цифры отсутствуют.

Принципиальная схема включения электролизера

Реактор из пластин

Высокопроизводительный генератор водорода, способный обеспечить работу газовой горелки, выполняется из нержавеющих пластин размером 15 х 10 см, количество – от 30 до 70 шт. В них просверливаются отверстия под стягивающие шпильки, а в углу выпиливается клемма для присоединения провода.

Кроме листовой нержавейки марки 316 понадобится купить:

  • резина толщиной 4 мм, стойкая к воздействию щелочи;
  • концевые пластины из оргстекла либо текстолита;
  • шпильки стяжные М10—14;
  • обратный клапан для газосварочного аппарата;
  • фильтр водяной под гидрозатвор;
  • трубы соединительные из гофрированной нержавейки;
  • гидроокись калия в виде порошка.

Пластины нужно собрать в единый блок, изолировав друг от друга резиновыми прокладками с вырезанной серединой, как показано на чертеже. Получившийся реактор плотно стянуть шпильками и подключить к патрубкам с электролитом. Последний поступает из отдельной емкости, снабженной крышкой и запорной арматурой.

Примечание. Мы рассказываем, как сделать электролизер проточного (сухого) типа. Реактор с погружными пластинами изготовить проще – резиновые прокладки ставить не нужно, а собранный блок опускается в герметичную емкость с электролитом.

Источник: https://sivcomsks.com/oksigeneratory-svoimi-rukami/

Оксидатор для аквариума: для чего нужен, как сделать своими руками, отзывы

Некоторые владельцы аквариумов вместо компрессора для аэрации стали ставить оксидатор.

Рассмотрим это устройство, функции, принцип работы и как его сделать своими руками.

Что такое и зачем нужен оксидатор в аквариуме

Оксидатор является устройством, получающим кислород из перекиси водорода и поставляющим его в аквариум. Им можно заменить компрессор для аэрации, который также насыщает водную среду этим полезным газом.

Особенно это актуально для аквариумов с небольшой поверхностью или слишком густой растительностью. В ночное время разросшиеся водоросли активно поглощают кислород, и у рыбок может случиться удушье.

Оксидатор состоит из таких деталей:

  • ёмкость из стекла;
  • пластиковая крышка с отверстиями;
  • катализаторы;
  • основание.

Сейчас в продаже можно найти оксидаторы для перевозки рыбы, для аквариумов различных объёмов и даже для прудов.

Как он работает

В стеклянную ёмкость наливают необходимый объём перекиси водорода. В ней находится также катализатор, разлагающий перекись на воду и кислород. Ёмкость закрывается крышкой и вставляется в основание.

Получившийся молекулярный кислород начинает выдавливать из отверстия крышки в основание устройства перекись водорода. Обычно основание делается из неокрашенной керамики, которая уже сама по себе также является катализатором, а значит, и в там продолжает идти процесс получения воды и кислорода.

Важно!При покупке оксидатора следует учитывать объёмы воды и способность этого устройства их обслуживать. Обычно его производительность и рекомендуемые ёмкости указаны уже на упаковке.

Устройство помещается в аквариум между элементами декора, и вода начинает обогащаться необходимым рыбкам газом. Периодически его достают и снова заполняют перекисью.

Преимущества использования

Оксидатор поставляет в водную среду молекулярный и активированный кислород и имеет целый ряд достоинств:

  • ему не нужно электричество и провод;
  • бесшумность;
  • активированный кислород угнетает патогенную микрофлору (бактерии, грибки, простейшие), окисляет продукты распада и нитриты, осуществляя уникальную биоочистку воды;
  • способность подавлять болезнетворные бактерии благотворно отражается на здоровье рыб, страдающих от бактериальных инфекций, улучшает адаптацию новых рыбок;
  • увеличивается редокс-потенциал, что препятствует появлению и разрастанию водорослей.

Как сделать оксидатор для аквариума своими руками

Для того чтобы самим собрать это экологически чистое устройство, необходимы следующие материалы:

  • керамическая неокрашенная ёмкость небольшого объёма с узким горлышком — 1 шт.;
  • пробка из-под шампанского — 1 шт.;
  • 3% перекись водорода.

При изготовлении оксидатора следует выполнить следующие действия:

  1. Освободить пробку от проволоки и отрезать кусок необходимого размера.
  2. Подогнать кусочек пробки острым ножом под размеры горлышка выбранного сосуда.
  3. Взять сверло самого малого размера и по центру пробки сделать отверстие. Причём сверлом отверстие делается не до конца, а потом доделывается иглой.
  4. Перекись водорода заливается в керамическую неокрашенную ёмкость и плотно закупоривается сделанной пробкой.

Получившийся самодельный оксидатор можно уже ставить в аквариум. Если вы не нашли подходящую керамическую ёмкость, то можно взять любую другую и бросить в неё в качестве катализатора керамические осколки или грунт для аквариума из базальта. Небольшая красивая ёмкость может стать не только самодельным оксидатором, но и дополнительным декоративным элементом. Для борьбы с водорослями и с бактериальными болезнями рыбок надо брать перекись водорода с более высокой концентрацией и дополнительный катализатор. Для более сильного процесса катализа можно использовать кусочки обожжённой глины.

Оксидатор для аквариума своими руками: видеоВажно!При использовании самодельного оксидатора следует замерять уровень кислорода специальными тестерами (показатель нормы 5 мг/литр).

Если нет возможности таких замеров, то необходимо следить за поведением его обитателей. Рыбки при кислородном голодании поднимаются к поверхности и начинают глотать ртом воду, а затем и сам воздух.

Избыток кислорода может вызвать газовую эмболию у рыб, которая проявляет себя покраснением глаз, оттопыренной чешуёй и беспокойным поведением.

Инструкция по применению и установке

Рассмотрим, как используются покупные оксидаторы для разных объёмов воды. Принцип работы этих устройств: при увеличении обслуживаемых объёмов повышают количество и концентрацию перекиси водорода, число катализаторов. Если жители аквариума — крупные и шустрые рыбки, то для фиксации оксидатора используют камешки.

Оксидатор MINI

Этот вариант устройства предназначен для аквариумов не более 60 л. Такой универсальный окислитель хорошо использовать при длительной перевозке рыбок. Его помещают в вертикальном положении на дно ёмкости с водой.

Габариты устройства небольшие: высотой 6 см и 4 см диаметром. Контейнер для заправки перекисью водорода ёмкостью 20 мл. После опустошения его заливают заново стабилизированной перекисью. В комплект входят две ёмкости по 50 мл с 4,9% раствором перекиси водорода.

Период работы при температурном режиме в +25 °C:

  • для объёмов до 30 л достаточно взять 1 катализатор, продолжительность работы составит 28 дней;
  • для объёмов в пределах 30–60 л надо брать 2 катализатора. Время работы в таком случае будет 14 дней.
Читайте также  Как сделать термопредохранитель своими руками

В большие аквариумы можно поместить до четырёх оксидаторов MINI или поменять катализаторы на более эффективные.

Оксидатор MINI выпускает очень маленькие пузыри, которые слабо видны во время работы прибора. Если пузырьки полностью отсутствуют, значит контейнер пуст, и его надо заправить раствором.

Важно!Не стоит применять нестабилизированные или самодельные растворы для заправки контейнера — это может привести к гибели обитателей аквариума. Пользуйтесь только стабилизированной перекисью 4,9% и 6%.

Оксидатор D

Предназначен для ёмкостей от 60 до 150 л. Габариты: в диаметре — 8,5 см, в высоту — 8,5 см. Ёмкость контейнера для заправки 3–6% раствором перекиси водорода равна 125 мл. Продолжительность работы при температуре +25 °C — 1 л перекиси водорода хватает на 60 суток.

Оксидатор A

Годится для больших аквариумов ёмкостью 150–400 л. Работа данного прибора обеспечивает беспрерывное поступление кислорода. Для аквариумов более 400 л (400–700 л) рекомендуют устанавливать два оксидатора A.

Его помещают в вертикальном положении на дно аквариума. В аквариуме с морской водой следует устанавливать прибор во внешнем фильтре. Его размеры: в диаметре — 9 см, в высоту — 18 см. Ёмкость контейнера для заправки раствором перекиси водорода 6% составляет 250 мл.

Узнайте, можно ли не отстаивать воду для аквариума.

Время работы при температурном режиме +25 °C может длиться от 14 до 56 суток. Эта величина зависит от количества катализаторов и процентного соотношения перекиси водорода.

О том, что в контейнере для перекиси пусто, говорит отсутствие пузырьков. В таблице представлена продолжительность работы прибора в зависимости от объёмов воды и катализаторов.

Катализаторы, шт.

Время работы, дни

100–200

1

28

200–400

2

14

400–600

3

9

Оксидатор W

Используется для значительных объёмов воды — 600 л и выше. Его помещают в вертикальном положении на дно ёмкости.

В аквариуме с солёной водой надо разместить прибор во внешнем фильтре или подальше от кораллов и актиний. Параметры прибора: в диаметре — 15 см, в высоту — 18 см.

Ёмкость контейнера для заправки равняется 1 литру, а концентрация используемого раствора перекиси водорода может составлять 6–30%.

Время работы при температурном режиме в +25 °C колеблется в пределах 14–56 дней в зависимости от количества катализаторов и концентрации раствора. Когда из контейнера перестают выходить пузырьки, то надо его снова заправить. Необходимый объём раствора для заправки на один год составляет примерно от 3 до 5 л.

Узнайте, почему вода в аквариуме зеленая и мутная.

Отличительной чертой оксидатора W является его способность произвести большое количество кислорода за небольшой промежуток времени.

Его рекомендуют использовать для ёмкостей значительных размеров с установленной системой фильтрации. Для водной среды объёмом от 600 до 2000 л нужно брать для заправки контейнера перекись 6%.

А для объёмов от 2000 до 5000 л нужно брать перекись 19,9%.

В открытых водоёмах (бассейне, искусственном прудике и прочее) около 5000 л и во внешних открытых биофильтрах океанариумов используют перекись водорода концентрацией от 19,9 до 30%.

Оксидаторы являются отличной альтернативой компрессорам для аэрации. Они не только насыщают аквариумную среду необходимым рыбкам кислородом. Активированный кислород, выделяемый перекисью водорода, используемой в этих устройствах, угнетает патогенную флору, окисляет нитриты и продукты распада, препятствует разрастанию водорослей.

В продаже можно найти оксидаторы для различных объёмов воды, применяемые не только в аквариумах, но и в прудах, при перевозке рыбок. Это нехитрое устройство можно собрать самим в домашних условиях и заправлять обычной перекисью водорода из аптеки.

Отзывы

в то и штука — что из оксидатора на выходе получается атомарный кислород, обычно в шлейфа белой пыли выходит, а если не видно значит перекись и катализаторы подобраны правильно

Baskakov

https://www.aqa.ru/forum/oksidator-kto-ispolzuet-211069-page1#pid1618768

ну, уже то, что он снижает pH, уже большой плюс. Да, и другого, дополнительного, источника кислорода, у меня тоже нет. С травником я заморачиваться не хочу, а компрессор не ставлю.

Так что, пока, я доволен. И органику, по-чуть,окисляет, и кислородом воду обогащает, и подкисливает.

Vadim Art

http://www.aquaforum.ua/showpost.php?p=1965704&postcount=32

У меня в 250л травнике стоит оксидатор для 100л.

Поставила потому, что аэрация приводит к нежелательному росту водорослей, а за ночь в густозаросшем травнике рыбы страдают от недостатка кислорода. Оксидатор эту проблему снял.

Он конечно, слабоват, но лучше наличие хоть такого. Перекись могу достать только аптечную 3%. Полная выработка за 2-3 недели.

Интересно, что катализатор внутри оксидатора выглядит точь-в-точь как гранула корма для морсвинок. При переезде с аквариумами и моими свинками в горячке я его смела в мусорку. Потом опомнилась, пришлось заказывать и ехать за ним в Питер. Хорошо, что его можно купить отдельно как запчасть.

grunen

http://aquariumok.ru/forum/756#comment-12956

Источник: https://pets2.me/bok/1719-oksidator-dlya-akvariuma-svoimi-rukami.html

Кислородные конусы » FISH-AGRO | Оборудование для разведения рыбы и рыбоводство в УЗВ

При заказе тип и диаметра фланца, а также направление уточняется Заказчиком

Кислород и его альтернатива.Удельное потребление кислорода осетрами в (мг О2/кг в час) для дыхания в зависимости от температуры оборотной воды и навески рыбы составляет от 180 до 542 мг О2/кг в час. В УЗВ 10 тн единовременно будет находиться 4 тн рыбы разной навески.

Среднее потребление  в час всей рыбой составит порядка 1- 1,2 кг О2.

Если не использовать кислород, плотность посадки рыбы не может быть больше 25 кг/м2 при 100% насыщении воды кислородом, или нужно увеличивать оборот воды в системе, что малоэффективно, так как рыбы будет тратить часть энергии корма на сопротивление потоку воды, да и потребуются более мощные насосы и фильтры.

Если не увеличивать скорость оборота воды в УЗВ, для выращивания тех же 10 тн придется в 2-3 раза увеличивать объем рыбоводных емкостей, это влечет за собой увеличение пропускной способности механического фильтра, мощности насосов, количества кормушек и т.д.

Если прикинуть стоимость дополнительного технологического оборудования и прибавить к этому стоимость строительства дополнительной площади для его размещения получается, что кислород не такой дорогой, как кажется на первый взгляд.

Альтернатива концентратору кислорода — криогенный баллон для хранения жидкого кислорода +  обвязка для перевода кислорода в газообразную форму. В сутки Вам понадобится 28-30 кг кислорода. Объем баллона — исходя из частоты заполнения. Эта альтернатива хорошо работает, когда поблизости есть завод, производящий жидкий кислород. Вариант со сжатым кислородом: потребуется 5 баллонов в сутки.

Основные технические характеристики:

 

МодельРасход, м3/часРазмеры(D*H)Соединение DN Насыщение,%Стоимость, руб.

Vaneco cone oxygenator О2-15 15 500*2000 50 до 250 78 000
Vaneco cone oxygenator О2-30 30 600*2000 75 до 250 94 000
Vaneco cone oxygenator О2-60 60 800*2200 125 до 250 125 000
Vaneco cone oxygenator О2-90 90 900*2500 160 до 250 180 000
Vaneco cone oxygenator О2-120 120 1000*2500 200 до 250 239 000

Оксигенация — процесс насыщения воды кислородом, необходимым для жизнедеятельности гидробионтов. Кислород, производимый кислородным генератором, по патрубку подается в верхнюю часть конуса, где происходит его смешение с водой под давлением. Конструкция конуса позволяет получить эффективность растворения кислорода в 95%, насыщение воды кислородом до 25 мг/л при давлении в 1 Бар. При большем давлении возможно получение большей концентрации растворенного кислорода в воде.

Конусные оксигенаторы

Наши Конусные оксигенаторы выполнены из нержавейки, что делает конструкцию не дорогой, но в то же время надёжной. Преимущества — лёгкость и устойчивость к коррозии.

 Конструкция конуса позволяет получить эффективность растворения кислорода в 95%, насыщение воды кислородом до 25 мг/л при давлении в 1 Бар.

При большем давлении возможно получение большей концентрации растворенного кислорода в воде.

Вы можете обеспечить практически любой расход, увеличивая количество устанавливаемых оксигенаторов.

Для получения более подробной информации и цен свяжитесь с нами.

Общие свойства оксигенаторов

  • Материал – некоррозийное стекловолокно
  • Диапазон расходов — от 15 до 140 м3/час
  • Максимальное давление – до 4 бар
  • Эффективность растворения кислорода — 95%

Возможны 2 исполнения конусов, в зависимости от величины допустимого избыточного давления:

— 2 бар

— 4 бар

Модель        

Ном. поток, м3/час        

            Растворение кислорода при 15оС (кг/час )

P=1 .0 бар

P=1 .5 бар

OCW 30

30

0.8

1.2

OCW 60

60

1.6

2.4

OCW 90

90

2.5

3.6

OCW 110

110

3.1

4.4

OCW 140

140

3.8

5.6

Модель               

Масса, кг      

         Размеры                      

Присоединительный размер фланца

A

B

C

OCW 15

15/250

132

58

31

DN65

OCW 30

30/500

172

60

36

DN100

OCW 60

60/1000

219

80

42

DN100

OCW 90

90/1500

220

90

47

DN125

OCW 110

110/1833

270

100

49

DN125

OCW 140

140/2333

316

120

58

DN150

Источник: http://fish-agro.ru/uzv-main/oxygen_konus/

Понравилась статья? Поделить с друзьями: