Как определить твердость металла

Твердость металлов

Как определить твердость металла

Машиностроительные детали и механизмы, а также инструменты, предназначенные для их обработки, обладают набором механических характеристик. Немалую роль среди характеристик играет твердость. Твердость металлов наглядно показывает:

  • износостойкость металла;
  • возможность обработки резанием, шлифованием;
  • сопротивляемость местному давлению;
  • способность резать другой материал и прочие.

Твердость металлов

На практике доказано, что большинство механических свойств металлов напрямую зависят от их твердости.

Понятие твердости

Твердость материала – это стойкость к разрушению при внедрении во внешний слой более твердого материала. Другими словами, способность к сопротивлению деформирующим усилиям (упругой или пластической деформации).

Определение твердости металлов производится посредством внедрения в образец твердого тела, именуемого индентором. Роль индентора выполняет: металлически шарик высокой твердости; алмазный конус или пирамида.

После воздействия индентора на поверхности испытуемого образца или детали остается отпечаток, по размеру которого определяется твердость. На практике используются кинематические, динамические, статические способы измерения твердости.

В основе кинематического метода лежит составление диаграммы на основе постоянно регистрирующихся показаний, которые изменяются по мере вдавливания инструмента в образец. Здесь прослеживается кинематика всего процесса, а не только конечного результата.

Динамический метод заключается в следующем. Измерительный инструмент воздействует на деталь. Обратная реакция позволяет рассчитать затраченную кинетическую энергию. Данный метод позволяет проводить испытание на твердость не только поверхности, но и некоторого объема металла.

Статические методы – это неразрушающие способы, позволяющие определить свойства металлов. Методы основаны на плавном вдавливании и последующей выдержке в течение некоторого времени. Параметры регламентируются методиками и стандартами.

Прилагаемая нагрузка может прилагаться:

  • вдавливанием;
  • царапанием;
  • резанием;
  • отскоком.

Машиностроительные предприятия на данный момент для определения твердости материалов используют методы Бринелля, Роквелла, Виккерса, а также метод микротвердости.

На основе проводимых испытаний составляется таблица, в которой указываются материалы, прилагаемые нагрузки и полученные результаты.

Каждый способов измерения сопротивления металла к пластической деформации имеет свою методику его проведения, а также единицы измерения.

Измерение твердости мягких металлов производится методом Бринелля. Данному способу подвергаются цветные металлы (медь, алюминий, магний, свинец, олово) и сплавы на их основе, чугуны (за исключением белого) и отожженные стали.

Твердость по Бринеллю определяется вдавливанием закаленного, отполированного шарика из шарикоподшипниковой стали ШХ15. Окружность шарика зависит от испытуемого материала. Для твердых материалов – все виды сталей и чугунов – 10 мм, для более мягких – 1 – 2 — 2,5 — 5 мм. Необходимая нагрузка, прилагаемая к шарику:

  • сплавы железа – 30 кгс/мм2;
  • медь и никель – 10 кгс/мм2;
  • алюминий и магний – 5 кгс/мм2.

Единица измерения твердости – это числовое значение и следующий за ними числовой индекс HB. Например, 200 НВ.

Твердость по Роквеллу определяется посредством разницы приложенных нагрузок к детали. Вначале прикладывается предварительная нагрузка, а затем общая, при которой происходит внедрение индентора в образец и выдержка.

В испытуемый образец внедряется пирамида (конус) из алмаза или шарик из карбида вольфрама (каленой стали). После снятия нагрузки производится замер глубины отпечатка.

Единица измерения твердости – это условные единицы. Принято считать, что единица — это величина осевого перемещения конуса, равная 2 мкм. Обозначение твердости маркируется тремя буквами HR (А, В, С) и числовым значением. Третья буква в маркировке обозначает шкалу.

Методика отображает тип индентора и прилагаемую к нему нагрузку.

Тип шкалы Инструмент Прилагаемая нагрузка, кгс
А Конус из алмаза, угол вершины которого 120° 50-60
В Шарик 1/16 дюйма 90-100
С Конус из алмаза, угол вершины которого 120° 140-150

В основном, используются шкалы измерения А и С. Например, твердость стали HRC 26…32, HRB 25…29, HRA 70…75.

Измерению твердости по Виккерсу подвергаются изделия небольшой толщины или детали, имеющие тонкий, твердый поверхностный слой. В качестве клинка используется правильная четырехгранная пирамида угол при вершине, которой составляет 136°. Отображение значений твердости выглядит следующим образом: 220 HV.

Измерение твердости по методу Шора производится путем замера высоты отскока упавшего бойка. Обозначается цифрами и буквами, например, 90 HSD.

К определению микротвердости прибегают, когда необходимо получить значения мелких деталей, тонкого покрытия или отдельной структуры сплава. Измерение производят путем измерения отпечатка наконечника определенной формы. Обозначение значения выглядит следующим образом:

[/su_box]

Н□ 0,195 = 2800, где

□  — форма наконечника;

0,196  — нагрузка на наконечник, Н;

2800 – численное значение твердости, Н/мм2.

Твердость основных металлов и сплавов

Измерение значения твердости проводится на готовых деталях, отправляющихся на сборку. Контроль производится на соответствие чертежу и технологическому процессу. На все основные материалы уже составлены таблицы значений твердости как в исходном состоянии, так и после термической обработки.

Цветные металлы

Твердость меди по Бринеллю составляет 35 НВ, значения латуни равны 42-60 НВ единиц в зависимости от ее марки. У алюминия твердость находится в диапазоне 15-20 НВ, а у дюралюминия уже 70НВ.

Черные металлы

Твердость по Роквеллу чугуна СЧ20 HRC 22, что соответствует 220 НВ. Сталь: инструментальная – 640-700 НВ, нержавеющая – 250НВ.

Для перевода из одной системы измерения в другую пользуются таблицами. Значения в них не являются истинными, потому что выведены империческим путем. Не полный объем представлен в таблице.

HB HV HRC HRA HSD
228 240 20 60.7 36
260 275 24 62.5 40
280 295 29 65 44
320 340 34.5 67.5 49
360 380 39 70 54
415 440 44.5 73 61
450 480 47 74.5 64
480 520 50 76 68
500 540 52 77 73
535 580 54 78 78

Значения твердости, даже если они производятся одним и тем же методом, зависят от прилагаемой нагрузки. Чем меньше нагрузка, тем выше показания.

Методы измерения твердости

Все методы определения твердости металлов используют механическое воздействие на испытуемый образец – вдавливание индентора. Но при этом не происходит разрушение образца.

Читайте также  Что такое паковка металла

Метод определения твердости по Бринеллю был первым, стандартизованным в материаловедении. Принцип испытания образцов описан выше. На него действует ГОСТ 9012. Но можно вычислить значение по формуле, если точно измерить отпечаток на образце:

HB=2P/(πD*√(D2-d2),

  • гдеР – прикладываемая нагрузка, кгс;
  • D – окружность шарика, мм;
  • d – окружность отпечатка, мм.Шарик подбирается относительно толщины образца. Нагрузку высчитывают предварительно из принятых норм для соответствующих материалов:сплавы из железа — 30D2;медь и ее сплавы — 10D2;баббиты, свинцовые бронзы — 2,5D2.

Условное изображение принципа испытания

Скачать ГОСТ 9012-59

Схематически метод исследования по Роквеллу изображается следующим образом согласно ГОСТ 9013.

Метод измерения твердости по Роквеллу

Итоговая приложенная нагрузка равна сумме первоначальной и необходимой для испытания. Индикатор прибора показывает разницу глубины проникновения между первоначальной нагрузкой и испытуемой h –h0.

Скачать ГОСТ 9013-59

Метод Виккерса регламентирован ГОСТом 2999. Схематически он изображается следующим образом.

Метод Виккерса

Математическая формула для расчета:
HV=0.189*P/d2 МПа
HV=1,854*P/d2 кгс/мм2
Прикладываемая нагрузка варьируется от 9,8 Н (1 кгс) до 980 Н (100 кгс). Значения определяются по таблицам относительно измеренного отпечатка d.

Метод Шора

Метод считается эмпирическим и имеет большой разброс показаний. Но прибор имеет простую конструкцию и его можно использовать при измерении крупногабаритных и криволинейных деталей.

Измерить твердость по Моосу металлов и сплавов можно царапанием. Моос в свое время предложил делать царапины более твердым минералом по поверхности предмета. Он разложил известные минералы по твердости на 10 позиций. Первую занимает тальк, а последнюю алмаз.

После измерения по одной методике перевод в другую систему весьма условен. Четкие значения существуют только в соотношении твердости по Бринеллю и Роквеллу, так как машиностроительные предприятия их широко применяют. Зависимость можно проследить при изменении диаметра шарика.

d, мм HB HRA HRC HRB
2,3 712 85,1 66,4
2,5 601 81,1 59,3
3,0 415 72,6 43,8
3,5 302 66,7 32,5
4,0 229 61,8 22 98,2
5,0 143 77,4
5,2 131 72,4

Как видно из таблицы, увеличение диаметра шарика значительно снижает показания прибора. Поэтому на машиностроительных предприятиях предпочитают пользоваться измерительными приборами с однотипным размером индентора.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: http://StankiExpert.ru/tehnologii/tverdost-metallov.html

Соотношения между числами твердости

Твердостью металла называют его свойство оказывать сопротивление пластической деформации при контактном воздействии стандартного тела-наконечника на поверхностные слои материала.

Испытание на твердость — основной метод оценки качества термообработки изделия.

Определение твердости по методу Бринелля. Метод основан на том, что в плоскую поверхность под нагрузкой внедряют стальной шарик. Число твердости НВ определяется отношением нагрузки к сферической поверхности отпечатка.

Метод Роквелла (HR) основан на статическом вдавливании в испытываемую поверхность наконечника под определенной нагрузкой.

В качестве наконечников для материалов с твердостью до 450 HR используют стальной шарик. В этом случае твердость обозначают как HRB.

При использовании алмазного конуса твердость обозначают как HRA или HRC (в зависимости от нагрузки).

Твердость по методу Виккерса (HV) определяют путем статического вдавливания в испытуемую поверхность алмазной четырехгранной пирамиды. При испытании измеряют отпечаток с точностью до 0,001 мм при помощи микроскопа, который является составной частью прибора Виккерса.

Метод Шора. Сущность данного метода состоит в определении твердости материала образца по высоте отскакивания бойка, падающего на поверхность испытуемого тела с определенной высоты. Твердость оценивается в условных единицах, пропорциональных высоте отскакивания бойка.

Числа твердости HRC для некоторых деталей и инструментов

Детали и инструменты Число твердости HRC
Головки откидных болтов, гайки шестигранные, рукоятки зажимные 33…38
Головки шарнирных винтов, концы и головки установочных винтов, оси шарниров, планки прижимные и съемные, головки винтов с внутренними шестигранными отверстиями, палец поводкового патрона 35…40
Шлицы круглых гаек 36…42
Зубчатые колеса, шпонки, прихваты, сухари к станочным пазам 40…45
Пружинные и стопорные кольца, клинья натяжные 45…50
Винты самонарезающие, центры токарные, эксцентрики, опоры грибковые и опорные платики, пальцы установочные, цанги 50…60
Гайки установочные, контргайки, сухари к станочным пазам, эксцентрики круговые, кулачки эксцентриковые, фиксаторы делительных устройств, губки сменные к тискам и патронам, зубчатые колеса 56…60
Рабочие поверхности калибров — пробок и скоб 56…64
Копиры, ролики копирные 58…63
Втулки кондукторные, втулки вращающиеся для расточных борштанг 60…64

Таблица соотношений между числами твердости по Бринеллю, Роквеллу, Виккерсу, Шору

По РоквеллуПо БринеллюПо Виккерсу (HV)По ШоруHRCHRAHRBДиаметр отпечатка HB
65 84,5 2,34 688 940 96
64 83,5 2,37 670 912 94
63 83 2,39 659 867 93
62 82,5 2,42 643 846 92
61 82 2,45 627 818 91
60 81,5 2,47 616
59 81 2,5 601 756 86
58 80,5 2,54 582 704 83
57 80 2,56 573 693
56 79 2,6 555 653 79,5
55 79 2,61 551 644
54 78,5 2,65 534 618 76,5
53 78 2,68 522 594
52 77,5 2,71 510 578
51 76 2,75 495 56 71
50 76 2,76 492 549
49 76 2,81 474 528
48 75 2,85 461 509 65,5
47 74 2,9 444 484 63,5
46 73,5 2,93 435 469
45 73 2,95 429 461 61,5
44 73 3 415 442 59,5
42 72 3,06 398 419
40 71 3,14 378 395 54
38 69 3,24 354 366 50
36 68 3,34 333 342
34 67 3,44 313 319 44
32 67 3,52 298 302
30 66 3,6 285 288 40,5
28 65 3,7 269 271 38,5
26 64 3,8 255 256 36,5
24 63 100 3,9 241 242 34,5
22 62 98 4 229 229 32,5
20 61 97 4,1 217 217 31
18 60 95 4,2 207 206 29,5
59 93 4,26 200 199
58 4,34 193 192 27,5
57 91 4,4 187 186 27
56 89 4,48 180 179 25

Источник: http://tekhnar.ru/materialy/tverdost.html

Что такое твердость и как ее измерить?

Твердостью называют свойство материала сопротивляться внедрению в его поверхность индентора.

В чем измеряется твердость?

Существуют два основных способа отображения твердости материалов:

  • в килограмм-силы на квадратный миллиметр (кгс/мм2);
  • может обозначаться буквами HB (HBW), HRB, HRC, HV, HA, HD, HC, HOO и т.д.
Читайте также  Из какого металла делают ножи

По каким методам можно измерять твердость?

В настоящее время разработано много способов определения твердости металлов, таких как:

  • измерение твердости вдавливанием под действием статической нагрузки (по методу Бринелля, Роквелла, Супер-Роквелла, Виккерса, М.С.Дрозда, Герца, Лудвика, монотрон Шора, пресс Бринелля);
  • измерение твердости динамическим вдавливанием (по методу Мартеля, Польди, вертикальный копер Николаева, пружинный прибор Шоппера и Баумана, маятниковый копер Вальцеля, склероскоп Шора, маятник Герберта, маятниковый склерометр Кузнецова);
  • измерение микротвердости статическим вдавливанием (по методу Липса, Егорова, Хрущева, Скворцова, Алехина, Терновского, Шоршорова, Берковича, Кнупа, Петерса,Эмерсона, микротвердомер Цейсса-Ганеманна и др.);
  • измерение твердости царапанием (напильником Барба, по Моосу, прибор Мартенса, Хенкинса, микрохарактеризатор Бирбаума, склерометр О’Нейля, Григорович, Беркович).

Среди всех этих способов наибольшую популярность получил способ внедрения индентора под действием статической нагрузки. Основными методами для измерения твердости являются: Бринелль, Роквелл, Виккерс, Шора.

Требования к измерению твердости

К самому распространенному способу измерения твердости, предъявляются следующие требования:

  • измерительный прибор должен быть надежным по конструкции, удобным в обращении, универсальным и применимым ко всем без исключения твердым телам, а сама операция по измерению твердости – простой и быстрой;
  • вне зависимости от величины прилагаемого усилия или затрачиваемой энергии, значение твердости для однородного тела при постоянной температуре должно быть материальной константой;
  • поверхность образца и способ его крепления должны обеспечивать надежную фиксацию, не допускают смещение образца относительно оси приложения нагрузки;
  • твердость должна иметь совершенно определенный и ясный физический смысл, и правильную размерность, характеризующую сопротивление материала пластической деформации.

Как рассчитать твердость материала?

Чем выше твердость, тем более высокая нагрузка нужна для определения его твердости. Чем точнее метод, тем выше требования к подготовке испытательной поверхности материала.

Соответственно нам необходимо подобрать метод определения твердости, дающий минимальную погрешность при минимальном повреждении поверхности и минимальных затратах на подготовку поверхности к испытанию.

В чем измеряется твердость стали?

Наиболее распространенный способ определения твердости стали — внедрения индентора под действием статической нагрузки по методам Бринелля, Роквелла, Виккерса (см. таблицу 1). И для каждого метода имеется своя шкала измерения твердости.

Таблица 1

Название прибораПринцип действия и форма наконечникаПример обозначения шкалФормула вычисления твердостиИнденторШкалаОбозначение
Прибор Бринелля Вдавливание стального закаленного шарика диаметром 1,25; 2,5; 5 или 10 мм и др., нагрузками в диапазоне от 1 до 62,5 кгс или от 62,5 до 3000 кгс в плоскую поверхность испытуемого тела Твердосплавный сферический инденторс ⌀2,5 и усилием 187,5 кгс HB (w) HB (w) 2,5/187,5 Твердость вычисляется по диагонали отпечатка как нагрузка, деленная на площадь поверхности отпечатка:, кгс/мм2
Прибор Роквелла и Супер-Роквелла Вдавливание алмазного конуса с углом заострения 120° или стальных шариков диаметром 1/2'', 1/4'', 1/8'' или 1/16'' стандартными нагрузками 150, 100 и 60 кгс (Роквелл) или 45, 30 и 15 кгс (Супер-Роквелл) Алмазный индентор конической формы с углом при вершине 120° с усилием 60 кгс HRA 60 HRA Мерой твердости служит разность глубин проникновения наконечника при приложении основной и предварительной нагрузки, измеренная в условных делениях- при измерении по шкале А (HRA) и С (HRC):HR = 100-(H-h)/0,002Разность представляет разность глубин погружения индентора (в миллиметрах) после снятия основной нагрузки и до её приложения (при предварительном нагружении).- при измерении по шкале B (HRB):HR = 130-(H-h)/0,002
Твердосплавный сферический индентор с диаметром 1,588 мм (1/2”) и усилием 100 кгс HRB (w) 100 HRB (w)
Алмазный индентор конической формы с углом при вершине 120° с усилием 150 кгс HRC 150 HRC
Прибор Виккерса и Микро-Виккерса Вдавливание алмазной пирамиды с квадратным основанием и углом при вершине между гранями 136° c нагрузками от 0,01 до 50 кгс Алмазный индентор пирамидальной формы c 4 гранямис усилием 1 кгсс усилием 0,5 кгс HV HV 1,0HV 0,5 Твердость вычисляется по диагонали отпечатка как нагрузка, деленная на площадь поверхности отпечаткаНагрузка Р может меняться от 9,8 (1 кгс) до 980 Н (100 кгс). Твердость по Виккерсу HV = 0.189*P/d2, МПа, если Р выражена в Н, и HV = 1,854*P/d2, кгс/мм2, если Р выражена в кгс.Твердость Н определяют по той же формуле, что и твердость по Виккерсу:H = 0.189*P/d2, если Р выражена в Н.
Алмазный индентор пирамидальной формы c 3 гранямис усилием 0,1 кгс НК НК 1,0

Таблица 2

Методы статического определения твердости вдавливанием

Название прибора, автор (год)Принцип действия и форма наконечникаИзмеряемый параметр, метод вычисления твердости и ее условная размерность
По методу Герца (1881) Сдавливание полусферы и плоскости из испытуемого материала до появления следов пластической деформации или трещины HГ = 6Р/πd2кр, кгс/мм2
Монотрон Шора (1900) Вдавливание алмазного шарика диаметром 0,75 мм или стальных шариков диаметром 1/16″ и 2,5 мм на стандартную глубину 0,045 мм Мерой твердости служит нагрузка (кгс), необходимая для вдавливания на стандартную глубину
По методу Лудвика (1907) Вдавливание стального конуса с углом заострения 90° в плоскость испытуемого тела Твердость вычисляется как нагрузка, деленная на площадь проекции
По методу М. С. Дрозда (1958) Вдавливание шарика нагрузкой Р, измерение глубины восстановленного отпечатка h и критической нагрузки Рs, отвечающей переходу от упругого к остаточному опечатку Н = (Р-Рs)/πDhвосст, кгс/мм2

Таблица 3

Методы динамического определения твердости

Название прибора, автор (год)Принцип действия и форма наконечникаИзмеряемый параметр, метод вычисления твердости и ее условная размерность
По методу Мартеля (1895) Удар стальной пирамидой, укрепленной на падающем бойке По энергии удара и диагонали отпечатка определяется твердость H = Е1/V, кгс/мм2
Вертикальный копер Николаева Удар бойка весом 3 кгс, падающего с высоты 530 мм, по стальному шарику 10 мм, прижатому к изделию По диаметру отпечатка и тарировонным кривым определяется НВ, кгс/мм2
Пружинный прибор Шоппера Удар стальным шариком диаметром 10 мм с помощью сжатой пружины По глубине отпечатка определяется НВ, кгс/мм2
Пружинный прибор Баумана Удар бойком со стальным шариком диаметром 5 или 10 мм с помощью сжатой пружины с запасом энергии 0,15 и 0,53 кгс·см По диаметру динамического отпечатка и тарировочным кривым находится НВ, кгс/мм2
Прибор Польди Удар молотком по бойку, под которым находится эталон и испытуемое тело с зажатым между ними закаленным стальным шариком диаметром 10 мм По диаметрам отпечатков на образце и эталоне определяется твердость: HВобр = 2 НВэт*d2эт/d2обр, кгс/мм2
Маятниковый копер Вальцеля (1934) Удар стальным шариком диаметром 5 или 10 мм, укрепленным на маятниковом копре Угол отскока в условных единицах
Склероскоп Шора Падение бойка весом 2,3 гс с коническим алмазным наконечником с высоты 254 мм Число условных единиц высоты отскока бойка
Маятник Герберта Качание маятника весом 2 или 3 кгс, опирающегося на поверхность испытуемого тела стальным или рубиновым шариком диаметром 1 мм Бремя 10 односторонних качаний маятника в секунду или амплитуда одного качания в условных единицах
Маятниковый склерометр Кузнецова (1931) Качание маятника весом 1 кгс, опирающегося двумя стальными наконечниками или шариками на испытуемое тело Время затухания колебаний до заданной амплитуды
Читайте также  Как приклеить металл к металлу

Таблица 4

Методы статического определения твердости вдавливанием

(микротвердость)

Название прибора и автор (год)Принцип действия и форма наконечникаВычисление твердости и ее условная размерность
По методу Лидса (1936) Вдавливание пирамиды Виккерса 136° собственным весом индентора (35 г) и давлением воздуха на поршень Твердость определяется как отношение нагрузки (в гс) к площади поверхности отпечатка (по диагонали, в мкм)HV = 1854,4 P/d2, кгс/мм2
Микротвердомер Цейсса— Ганеманна (1940) Вдавливание пирамиды Виккерса нагрузкой 2—100 гс, создаваемой плоскими пружинами То же
ПМТ-2, ПМТ-3 (Хрущов, Беркович) Вдавливание пирамиды Виккерса сменными нагрузками 2—500 гс То же
По методу Кнупа, Петерса, Эмерсона (1939) Вдавливание алмазного наконечника Кнупа (пирамида с основанием в виде сильно вытянутого ромба и углами между ребрами 130° и 172°30') с нагрузкой 50—4909 гс Твердость определяется как отношение нагрузки (в кгс) к площади поверхности невосстановленного «отпечатка», исчисляемой по длинной диагонали d (в мм):Нк = 12,87 P/d2, кгс/мм2
По методу Берковича Вдавливание алмазной трехгранной пирамиды с углом между гранью и осью 65° Н = 2092 Р/а2 = 1570 Р/l2, кгс/мм2;Р в гс, а и l в мкм
По методу Егорова и др. (1970) Вдавливание алмазного лезвия, образованного двумя цилиндрами радиусом 2 мм, оси которых! пересекаются под углом 136° Н = ЗR*sin а *Р/l3 = 4167960Р/l3, кгс/мм2Р в гс l в мкм
По методу Калей, Хрущова, Скворцова, Алехина, Терновского, Шоршорова (1968-1973) Вдавливание алмазной 136-градусной пирамиды с регистрацией нагрузки и глубины погружения индентора в процессе испытания Н = 18544 P/d2, кгс/мм2Р в гс; d в мкм

Таблица 5

Методы определения твердости царапанием

Прибор и автор (год)Принцип действия я форма наконечнякаИзмеряемый параметр, вычисление твердости я ее условная размерность
Испытание напильником,Барба (1640) Царапание испытуемого тела стальным напильником Если тело царапается, оно мягче напильника, если не царапается, то тверже или имеет равную твердость
Испытание по Моосу (1822) Царапание исцытуемого тела набором 10 эталонных минералов (тальк, гипс, кальцит, флюорит, апатит, ортоклаз, кварц, топаз, корунд, алмаз) Если испытуемое тело царапается минералом, оно мягче его, если само царапает минерал, то тверже. Твердость выражается числом 10-балльной шкалы
Прибор Мартенса (1890) Царапание алмазным конусом с углом заострения 90° при нагрузках от 2 до 50 гс Твердость выражается нагрузкой (в гс), отвечающей ширине царапины 10 мкм
Микрохарактеризатор Бирбаума (1920) Царапание углом алмазного куба при нагрузке 3 гс Твердость вычисляется по формуле H = 104b2, гдеЬ — ширина царапины в мк
Прибор Хенкинса (1923) Царапание V-образным алмазом с усилием 1—150 гс Твердость вычисляется по формуле H = Р/Ь2, кгс/мм2
Склерометр О’Нейля (1928) Царапание полусферическим алмазом диаметром 1 мм Твердость равна давлению, соответствующему царапине шириной 0,1 мм
ПМТ-3 (Григорович, 1949) Царапание алмазной четырехгранной пирамидой с углом между гранями 136° Твердость равна среднему контактному давлению Н = Р/Ь2/4, кгс/мм2
ПМТ-3 (Беркович) Царапание трехгранной пирамидой Н = 3708 Р/Ь2, кгс/мм2Р в гс; b в мкм

Источник: https://metrotest.ru/article/tverdost

Как определить твердость металла в домашних условиях

Машиностроительные детали и механизмы, а также инструменты, предназначенные для их обработки, обладают набором механических характеристик. Немалую роль среди характеристик играет твердость. Твердость металлов наглядно показывает:

  • износостойкость металла;
  • возможность обработки резанием, шлифованием;
  • сопротивляемость местному давлению;
  • способность резать другой материал и прочие.

Твердость металлов

На практике доказано, что большинство механических свойств металлов напрямую зависят от их твердости.

Единицы измерения твердости

Каждый способов измерения сопротивления металла к пластической деформации имеет свою методику его проведения, а также единицы измерения.

Измерение твердости мягких металлов производится методом Бринелля. Данному способу подвергаются цветные металлы (медь, алюминий, магний, свинец, олово) и сплавы на их основе, чугуны (за исключением белого) и отожженные стали.

Твердость по Бринеллю определяется вдавливанием закаленного, отполированного шарика из шарикоподшипниковой стали ШХ15. Окружность шарика зависит от испытуемого материала. Для твердых материалов – все виды сталей и чугунов – 10 мм, для более мягких – 1 – 2 — 2,5 — 5 мм. Необходимая нагрузка, прилагаемая к шарику:

  • сплавы железа – 30 кгс/мм2;
  • медь и никель – 10 кгс/мм2;
  • алюминий и магний – 5 кгс/мм2.

Единица измерения твердости – это числовое значение и следующий за ними числовой индекс HB. Например, 200 НВ.

Твердость по Роквеллу определяется посредством разницы приложенных нагрузок к детали. Вначале прикладывается предварительная нагрузка, а затем общая, при которой происходит внедрение индентора в образец и выдержка.

В испытуемый образец внедряется пирамида (конус) из алмаза или шарик из карбида вольфрама (каленой стали). После снятия нагрузки производится замер глубины отпечатка.

Единица измерения твердости – это условные единицы. Принято считать, что единица — это величина осевого перемещения конуса, равная 2 мкм. Обозначение твердости маркируется тремя буквами HR (А, В, С) и числовым значением. Третья буква в маркировке обозначает шкалу.

Методика отображает тип индентора и прилагаемую к нему нагрузку.

Тип шкалы Инструмент Прилагаемая нагрузка, кгс
А Конус из алмаза, угол вершины которого 120° 50-60
В Шарик 1/16 дюйма 90-100
С Конус из алмаза, угол вершины которого 120° 140-150

В основном, используются шкалы измерения А и С. Например, твердость стали HRC 26…32, HRB 25…29, HRA 70…75.

Измерению твердости по Виккерсу подвергаются изделия небольшой толщины или детали, имеющие тонкий, твердый поверхностный слой. В качестве клинка используется правильная четырехгранная пирамида угол при вершине, которой составляет 136°. Отображение значений твердости выглядит следующим образом: 220 HV.

Измерение твердости по методу Шора производится путем замера высоты отскока упавшего бойка. Обозначается цифрами и буквами, например, 90 HSD.

К определению микротвердости прибегают, когда необходимо получить значения мелких деталей, тонкого покрытия или отдельной структуры сплава. Измерение производят путем измерения отпечатка наконечника определенной формы. Обозначение значения выглядит следующим образом:

[/su_box]

Н□ 0,195 = 2800, где

□  — форма наконечника;

0,196  — нагрузка на наконечник, Н;

2800 – численное значение твердости, Н/мм2.

Понравилась статья? Поделить с друзьями: